

Work Package 2

Development and utilization of advanced numerical tools for CCS installations based on MCFC

MOLCAR

Work Package 2 (11.2020 .. 10.2022)

Goal: Creating an accurate numerical model of the installation with an MCFC stack for conducting variant analyzes

- Task 2.1: Parametric model
- Task 2.2: Guidelines for the prototype container based installation design
- Task 2.3: Computational fluid mechanics (CFD) model
- Task 2.4: Tuning and validation of a parametric model of the installation from the MCFC
- Task 2.5: Verification of assumptions and optimization of operating parameters

Task 2.1: Parametric model

Working principles of a dual conductivity Molten Carbonate Fuel Cell

Task 2.1: Parametric model

"Modular system based on Molten Carbonate Fuel Cells with tailored composite members designed for specific flue gas compositions oriented into CCS integration with an industrial power plant", project contract number NOR/POLNORCCS/MOLCAR/00-17/2020-00

13

ra

E_{max}

r_{eO}-

load

Task 2.1: Parametric model

$$r = \frac{\delta}{\sigma_{CO_3^{=}} \cdot \rho + \sigma_{O^{=}} \cdot (1 - \delta)}$$

$$\sigma = \sigma_0 \mathrm{e}^{\frac{-E_{act}}{R \cdot T}}$$

	σ_0 , S/cm	<i>E_{act}</i> , mol/kJ
Li ₂ CO ₃ /K ₂ CO ₃ eutectic [82]	3.59	25.1
SDC	73.5	60.2
BNT (this study)	1250	133
LNT (this study)	6020	152
Yttrium Stabilized Zirconia (this study)	391	87.8

Task 2.1: Parametric model – Li₂CO₃/K₂CO₃-BNT model

Model validation results for double conductivity electrolyte liK-BNT (Cell 1), tortuosity of BNT 25, tortuosity of LiK 6.6; r_eCO3 of LiK 1.64 Ohm x cm2, r_eO of BNT 179 Ohm x cm2

Task 2.1: Parametric model – Li₂CO₃/K₂CO₃-BNT model

Model validation results for double conductivity electrolyte LiK-BNT (Cell 2), tortuosity of BNT 0.0009 tortuosity of LiK 61; r_eCO3 of LiK 1.59 Ohm x cm2, r_eO of BNT 35 Ohm x cm2

Task 2.1: Parametric model – Li₂CO₃/K₂CO₃-LNT model

Model validation results for double conductivity electrolyte liK-LNT, tortuosity of LNT 0.00064, tortuosity of LiK 7.9; r_eCO3 of LiK 6.2 Ohm x cm², r_eO of LNT 1540 Ohm x cm²

Task 2.1: Parametric model – Li₂CO₃/K₂CO₃-YSZ model

• Experiment • Model

Task 2.1: Parametric model implementation into Aspen HYSYS

Task 2.2: Guidelines for the prototype container based installation design

A proposed configuration of flows regulating system, proposed by results of the parametric BoP model.

Ν	Working medium	Flow rate, NL/min		I/O signal	P-in	P-out
		min	max			
1	Air	5	1800	421 mA	2.5	0.5
2	Air	1	300	421 mA	2.5	0.5
3	Air	0	33	421 mA	2.5	0.5
4	CO2	7.5	300	421 mA	2.5	0.5
5	CO2	0.1	15	421 mA	2.5	0.5
6	CO2	0	35	421 mA	2.5	0.5
7	N2	5	300	421 mA	2.5	0.5
8	N2	12	500	421 mA	2.5	0.5
9	H2	0	5	421 mA	2.5	0.5
10	H2	6	250	421 mA	2.5	0.5

A proposed configuration of heating system, proposed by results of the parametric BoP model

N) M/orthing no odiumo	Power r	ate, kW	T man C dan
	working medium	min	max	I_IIIax, C deg
1	Cathodic main electric heater	10	15	800
2	Cathodic supporting electric heater	1.2	3	900
3	Anodic main electric heater	2	5	800
4	Anodic supporting electric heater	1.2	3	900
5	Water steam generator	1.3	3	400

A proposed configuration of electronic load system, proposed by results of the parametric BoP model

N	Device type	Operating voltage, V		Operating current, A		Circuit
		min	max	min	max	Sircuit
1	Electronic load	5	300	0	150	DC

Task 2.3: Computational fluid mechanics (CFD) model

- Internal flow distribution study and optimization
- Anodic and cathodic channels geometry estimation

Experimental set-up used to test pressure drop in MCFC stack

A 5kW MCFC stack, used as a reference for CFD model and validation

0.5 Nl/min: a) 450°C, b) 500°C, c) 650°C 2.0 Nl/min: d) 450°C, e) 500°C, f) 650°C

Task 2.4: Tuning and validation of a parametric model of the installation from the MCFC

Task 2.5: Verification of assumptions and optimization of operating parameters

A	В	С	D	E	F
Optimum	49.75	10.90	3.564		
MCFC Power	-0.93 kW	-1.00 kW			
MCFC temp	647.58 C	650.00 C		643.37 C	643.37 C
eta_CO2	2.765	41.6231 kg/h	42.8067 kg/h	2.815	4.000
MCFC efficiency	49.97	0.50 kW	50.00		
eta_f	0.94 kW				
m_fuel	0.00 kg/s	2.495e-004	59.87 kg/s		
m_flue gas	0.18 kg/s	1.944	466285.83 kg/s		
				0.3000	
		eta_f [·]	0.66 kW	0.94 kW	0.9900
i_max, MCFC	0.01 kW	i_max [A/cm2]	450.36 C	643.37 C	836.39 C
		Flue gas to MCFC	0.13kg/s	0.18 kg/s	0.23 kg/s
E_MCFC	0.66 kW	Flue gas to MCFC	0.00 kg/s	0.00 kg/s	0.00 kg/s
number of cell	200.03 kW	Fuel	<empty></empty>	<empty></empty>	(empty)
	200.0				